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Artificial Intelligence (Al)
& Machine Learning (ML)

Al & ML
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- 95% of network changes 22)  Remove
involve manual operation Al  from the fast oo

70% network faults are O Keep human in
caused by manual error the slow loop



A new dawn
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Industry
segments &
requirements

Network
scenarios

Technology
solution

High Differentiated Zero packet Smart Real-time, high

reliability services loss O&M bandwidth
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Network Al in Huawel

512 PFLOPS

/) | NAI E Cloud platform
0SS/Third-party app
Offline training

GPUs, TPUs
Ascend910
Northbound
> API
f Controller
* NCE
Analyzer
Cross-vendor NETCONF/YANG
southbound API Model-driven telemetry
Huawei devices Vendor B's devices

AirEngine NetEngine  CloudEngine HiSecEngine

@ TPU Ascend310

® IMaster

Training, data aggregation,
and model generalization

* IMaster

Network-wide analysis,
inference & closed-loop
optimization

Engines

Measurement, edge inference
& real-time decision-making

Training:
Federated
General: Learning
Multi-vendor
knowledge Specific:
graph/models Deep Models
Quantization &
Distillation
Control:
large-scale
data-driven
reinforcement O&M:
learning Unsupervised
Fault detection,
Semi-supervised
repair
Real-time
inference &
control
Incremental
& continuous
Model self-  learning
awareness
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Network 4 Al viewpoint

Training:
dModel training General: Ffjaerfi;egd
= E.g,realism in federated learning from heterogeneous Multi-vendor
. _ knowledge
deployments (practical system-level Al challenge) eraph/models
(dModel-driven telemetry (MDT)
= Heterogenity in the input data: multi-vendor S
‘o » ontrol:
(good to have “dirty data” Al problem) large-scale
. data-driven
(] Real-time reinforcement Real-time
= Where (Cloud vs Fog vs Edge) to allocate Al resources: learning inference &
architectural tradeoffs of privacy vs cost vs ... control
Large scale, heterogeneous RI
U Control => lower access barrier to
»= Delay+noise of MDT data streams: controllable/reproducible experimental study &
Al experiment in more challenging environment more realistic challenges
= Train on simulation (e.g., DRL takes lifetimes, cannot Large user community
learn from real network) refine & validate on SLICES => critical mass to push — SIiCGS

reproducibility standards
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. Control: -
Learning : -
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Google FedAvg works only Distributed o T@ia Signature portability issue: i - data-driven [ |
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Large scale, heterogeneous RI
=> lower access barrier to
experimental study &
more realistic challenges

Huawei traffic classification
Split ANN model into o0 “::19-& accuracy loss,
Common Backbone e @A 30x data reduction
+ Private Classifier " e i |
O Only the backbone is shared & averaged

eeeee

Di¥imsTV Sampls

[speedup learning of common hidden layers)

£] The last layer classifier remains private
{less information share/leak, better fit to the
data-of each client)

MNIST image dataset | |
1.3x faster to converge _ i
Jwith 1.5x less communication I l

iser community
tical mass to push
producibility standards
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Network 4 Al viewpoint
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Note: | was happy to find the “heterogeneity”’ keyword in Jon’s keynote ©



Al 4 Network viewpoint

J Model-driven O&M

= Unsupervised algorithms still need ground truth for benchmark
= Large SLICES crowd: can the community crowdsource anomaly
detection database beyond KDD99 (s/ImageNet/AnomalyNet/)?

(] Heterogenity (again)
= Model ages and data drifts: study ageing of models
imperative for deployment in a full Al lifecycle

 Incremental training
" Incremental training: system-level problems bring
algorithmic challenges

(] Real-time inference

Control:
large-scale
& ) O&M:
data-driven :
. Unsupervised
reinforcement :
. Fault detection,
learning : :
Semi-supervised
repair
Real-time
inference &
control
Incremental
& continuous
Model self- learning
awareness

Large scale, heterogeneous RI
=> critical piece to stress test
generalization & transfer

_ _ Large user community
= |nference: real-time low cost accurate inference => critical mass for crowd-

— slices

sourcing labeling expertis€ qme



Al 4 Network viewpoint

] Model-driven O&M

= Unsupervised algorithms still need ground truth for benchmark
= Large SLICES crowd: can the community crowdsource anomaly

detection database beyond KDD99 (s/ImageNet/AnomalyNet/)?

"~ Unsupervised -
MDT O&M
Challenges O Algorithm benchmarking
0 Anomalies are rare -> unsupervised learning

O still requires labels !
O Need to correlate faults -> multi-variate methods

O Need to correlate KPI and logs -> multi-mode methods (1 Algorithm selection & tuning
O Cannot store all data -> stream-based learning O Requires skills and time .9
O Interact with operator -> explainability (XAl) O Lot of algorithms|exist

Anomaly detection &
root-cause analysis

Q Each algorithm has many|hyper-parameters |
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Al 4 Network viewpoint

Real-time
Inference

Experimental setup
1 2 Servers Intel Xeon Platinum 8164 CPUs @2.00GHz

(L1/L2/L3 caches: 32 data+32 instruction/1MB/36MB)
d 1.5TB RAM (64GBx24 DDR4 @ 2666MT)

] Huawei Atlas 3001:3010 Inference Card (4x Ascend 310)

106 - Classification speed

Power drain vs Classification rate

General Purpose server

Input traffic

[ 3 datasets (2 internal and 1 publicly available)

U Adversarial analysis at 100 Gbps (speedup traces):
30-50kclass/sec depending on scenario

Huawei Ascend
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(] Real-time inference

" |nference: real-time low cost accurate inference
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