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95% of network changes 
involve manual operation

70% network faults are 
caused by manual error

Remove humans
from the fast loop

Keep human in 
the slow loop

Artificial Intelligence (AI)
& Machine Learning (ML)

AI & ML



A new dawn

Autonomous driving 
network
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Network 4 AI viewpoint  
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Federated
Learning

General:
Multi-vendor

knowledge 
graph/models  
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reinforcement

learning

Model training
 E.g., realism in federated learning from heterogeneous 

deployments (practical system-level AI challenge)

Model-driven telemetry (MDT)
 Heterogenity in the input data: multi-vendor 

(good to have “dirty data” AI problem)

 Real-time
 Where (Cloud vs Fog vs Edge) to allocate AI resources: 

architectural tradeoffs of  privacy vs cost vs ...

Control 
 Delay+noise of MDT data streams: controllable/reproducible 

AI experiment in more challenging environment
 Train on simulation (e.g., DRL takes lifetimes, cannot 

learn from real network) refine & validate on SLICES 

Large scale, heterogeneous RI
=>  lower access barrier to 

experimental study & 
more realistic challenges

Large user community
=>  critical mass to push 

reproducibility standards
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AI 4 Network viewpoint  
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 Model-driven O&M
 Unsupervised algorithms still need ground truth for benchmark
 Large SLICES crowd: can the community crowdsource anomaly 

detection database beyond KDD99 (s/ImageNet/AnomalyNet/)?

 Heterogenity (again)
 Model ages and data drifts: study ageing of models 

imperative for deployment in a full AI lifecycle

 Incremental training 
 Incremental training: system-level problems bring

algorithmic challenges 

 Real-time inference
 Inference: real-time low cost accurate inference

O&M: 
Unsupervised 

Fault detection,
Semi-supervised

repair

Large user community
=>  critical mass for crowd-

sourcing labeling expertise

Large scale, heterogeneous RI
=>  critical piece to stress test

generalization & transfer 
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public research resources 
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