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Executive Summary 

This document first provides an overview of the SLICES architecture and SLICES user-oriented services. 
Then, it focuses on a first analysis of the usage of such services with respect to three complex use 
cases. For each use case, a typical experiment is presented as well as the impact on SLICES services. It 
enables to confirm that identified SLICES services shall be able to cover complex use cases. It also 
enables to identify some points of attention that further refinement of these services should take care 
of. The last part of the document provides a preliminary list of some implementations of such services. 
While clearly theses implementations do not provide the level of functionality required by SLICES, it 
enables to show that there exist partial implementations of these services. Moreover, it can also be 
used as an input, which has to be extended, for the tasks of the next phases of SLICES that will specify 
and implement these services. 

 

 

 
 
  



 

 

3 

Table of contents 

EXECUTIVE SUMMARY .................................................................................................................. 2 

TABLE OF CONTENTS .................................................................................................................... 3 

1 SLICES OVERVIEW................................................................................................................. 5 

1.1 ARCHITECTURE OVERVIEW ............................................................................................................ 5 
1.2 SLICES SERVICES ........................................................................................................................ 6 

1.2.1 Overview ............................................................................................................................. 6 
1.2.2 Experiment validation and correlation ............................................................................... 7 

2 ANALYSIS OF THE USAGE OF SLICES SERVICES........................................................................ 9 

2.3 RAPID RESOURCE DEPLOYMENT FOR PHYSICAL DISASTER SCENARIOS .................................................. 9 
2.3.1 Use Case Description .......................................................................................................... 9 
2.3.2 Experiments that can be run on SLICES .............................................................................. 9 

2.4 SMART-* APPLICATIONS: THE SMART CITIES’ EXAMPLE..................................................................... 10 
2.4.1 Use Case Description ........................................................................................................ 10 
2.4.2 Experiments that can be run on SLICES ............................................................................ 10 

2.5 AUTOMATED CONSTRUCTION AND DEMOLITION WASTE MANAGEMENT USING DIGITAL TWIN FOR 

BUILDINGS ............................................................................................................................................. 11 
2.5.1 Use Case Description ........................................................................................................ 11 
2.5.2 Experiments that can be run on SLICES ............................................................................ 11 

3 ANALYSIS OF SOME EXISTING SERVICES AND TECHNOLOGIES .............................................. 11 

3.1 GRID’5000 USER MANAGEMENT SERVICE (USERS_MGT; GRID’5000)........................................... 13 
3.2 STATS5K (ACCOUNT; GRID’5000) ............................................................................................. 13 
3.3 GRID’5000 REFERENCE API (DISCOVERY; GRID’5000) ................................................................ 13 
3.4 OAR (RESERVATION; GRID’5000) ........................................................................................... 13 
3.5 OAR (RESERVATION, FIT IOT LAB) ........................................................................................... 13 
3.6 OAR (RESERVATION, FIT CORTEXLAB) ..................................................................................... 13 
3.7 KADEPLOY (CONFIGURATION; GRID’5000) ............................................................................... 13 
3.8 KAVLAN (CONFIGURATION; GRID’5000) ................................................................................ 13 
3.9 TESTBED MANAGER / FIT IOTLAB (ACCOUNT, DISCOVERY, RESERVATION, CONFIGURATION, 
MONITORING; FIT-IOT LAB) ................................................................................................................ 14 
3.10 ENOS (CONFIGURATION; GRID5000, VIRTUAL WALL, CHAMELEON) ............................................ 14 
3.11 KWOLLECT (MONITORING; GRID’5000) .................................................................................... 14 
3.12 JUPYTER INTERFACE (ORCHESTRATION; GRID’5000) .................................................................. 14 
3.13 CKAN (DATA, DOCUMENTATION; MANDAT INTERNATIONAL, IOT LAB) ...................................... 14 
3.14 GITLAB (DATA, DOCUMENTATION; MANDAT INTERNATIONAL, IOT LAB) ..................................... 14 
3.15 RI-MMS (USERS_MGT, ACCOUNT, RESERVATION, CONFIGURATION, MONITORING, 
EXP_MGT, ORCHESTRATION, DASHBOARD; PL-5G AND PIONIER-LAB) .............................................. 15 
3.16 FIT-R2LAB API (USERS_MGT, ACCOUNT, DISCOVERY, FIT-R2LAB) .......................................... 15 
3.17 FIT-R2LAB WEBSITE AND RESERVATION SERVICE (RESERVATION, MONITORING; FIT-R2LAB) ......... 16 
3.18 RHUBARBE (DEPLOYMENT; FIT-R2LAB) .................................................................................... 16 
3.19 NEPI-NG (ORCHESTRATION; FIT-R2LAB)................................................................................... 16 
3.20 ACCOUNTMANAGEMENT/CORTEXLAB (USERS_MGT, RESERVATION; FIT-CORTEXLAB) ................. 16 
3.21 MINUS/CORTEXLAB (CONFIGURATION, ORCHESTRATION; FIT-CORTEXLAB) ............................. 16 
3.22 CORTEXLAB-DATASET (DATA; FIT-CORTEXLAB) ............................................................................ 16 
3.23 NITOS PORTAL (USERS_MGT, ACCOUNT, RESERVATION, CONFIGURATION, MONITORING, 
EXP_MGT, ORCHESTRATION, DASHBOARD; NITOS TESTBED) .............................................................. 16 



 

 

4 

3.24 ONELAB PORTAL (USERS_MGT, DOCUMENTATION, DISCOVERY, RESERVATION, DASHBOARD; 
ONELAB TESTBED) .................................................................................................................................. 17 
3.25 OPENSTACK API (DISCOVERY, RESERVATION, CONFIGURATION, MONITORING, EXP_MGT, 
ONELAB TESTBED) .................................................................................................................................. 17 

4 CONCLUSION...................................................................................................................... 17 

5 BIBLIOGRAPHY ................................................................................................................... 18 

 
  



 

 

5 

1 SLICES Overview 

1.1 Architecture overview 

SLICES aims at providing high quality experimentation services with emerging technologies around the 
area of digital sciences. The goal is to build a large-scale infrastructure for experimental research in 
computer science, and more precisely in networking and distributed systems, targeting scientific 
challenges in the fields including wireless networking, IoT, edge/fog/cloud computing and distributed 
systems. 

SLICES will be a highly distributed infrastructure, to reflect the fact that the environments we aim to 
study are themselves distributed (e.g., Fog/Edge computing), towards supporting a large variety of 
viable topologies in distributed computing systems. SLICES shall be a coherent environment to perform 
large scale distributed experiments. The knowledge and experience gathered from previous efforts 
and initiatives have resulted in the design of several tools and platforms that shall manage this 
infrastructure in a coordinated way, providing users with a consistent environment that shall overcome 
the technical challenges of multi-sites experiments. 

Deliverable D2.3 [D2.3] presents an architectural view by identifying the various layer of SLICES 
architectures as depicted in Figure 1. 

 
Figure 1:  Layered architecture for SLICES 

1. Resource Layer: It includes experimental resources such as CPU’s, RAM, storage, containers, 
VM’s, network, wireless, HPC and IoT devices; 

2. Virtualization Layer: This layer includes cloud computing plat- forms (e.g., Openstack) that 
virtualize the underlying hardware resources and provide interfaces to the higher layers for 
programming/instantiating services over them. Examples of such programming interfaces are 
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the ones defined by the O-RAN alliance (e.g., A1/E2 interfaces), or the P4 programming 
abstractions for wired networks; 

3. Orchestration Layer: It includes tools that orchestrate and instantiate services over the 
infrastructure equipment. Examples of such tools are OSM, ONAP and Kubernetes, mainly 
involved in NFV Management and Orchestration. It provides Network- Function-as-a-service 
and exposes northbound interfaces (NBI) APIs to be used by external entities; 

4. NBI Layer: This Layer defines the Open APIs that can be used by the SLICES application 
framework. Examples of such inter- faces are the SOL005, the SOL004 from the ETSI NFV-
MANO architecture1 that can be found as the NBI interface of several MANO compliant tools, 
or even more generic ones, like TM-Forum based APIs for service lifecycle control; 

5. Application Layer: This Layer will host the SLICES-Core application, located at the SLICES central 
hub. It is responsible for managing all experimental resources that are exposed by lower layers, 
saved in the database and is further exposed to experimenters as a Service-Catalog. It also 
exposes NBI API’s that can be used by a 3rd party orchestrator. The architecture of SLICES- 
Core application will start from components similar to MySlice V22, and will be further 
enhanced at later stages; 

6. UI Layer: This Layer defines the User Interface for the experimenters. It should abstract the 
experiments enough to make them more user friendly as possible. 

This present document deals with the computer-based services envisioned to seamlessly access and 
make use of SLICES from a user point of view. These services aim at abstracting the layered view of the 
SLICES and are recalled in the next section. 

1.2 SLICES Services 

1.2.1 Overview 

Deliverable D2.2 [D2.2] presents twelve services that have been identified during the SLICES-DS project 
as well as within the beginning of the SLICES-SC. These services are structured in the four following 
categories: 

1. User and platform management services 

1.1: [USERS_MGT] User and group management 

1.2: [DOCUMENTATION] Documentation and Online Experiment Helpdesk 

1.3: [ACCOUNT] Accountability & billing 

2. Resource management services 

2.1: [DISCOVERY] Resource discovery and description 

2.2: [RESERVATION] Resource reservation 

2.3: [CONFIGURATON] Resource configuration 

2.4: [MONITORING] Resource monitoring and profiling 

 
1 G. ETSI, 013: Network functions virtualisation, NFV; Management and orchestration; Os-Ma-Nfvo reference point–Interface 
and information model specification. 
2 L. Baron, R. Klacza, P. Gaudet-Chardonnet, A. Bradai, C. Scognamiglio, S. Fdida, Next generation portal for federated testbeds 
MySlice V2: From prototype to production, in: Fed4FIRE Engineering Conference - FEC2, 2017, poster URL 
https://hal.archives-ouvertes.fr/hal-01804013, [Last accessed 26 August 2022] 

https://hal.archives-ouvertes.fr/hal-01804013
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3. Data oriented services 

3.1: [DATA] Data Management Service 

3.2: [ANALYSIS] Experiment data validation and correlation with other experiments 

4. Experiment management services 

4.1: [EXP_MGT] Experiment management 

4.2: [ORCHESTRATION] Experiment control and orchestration 

4.3: [DASHBOAD] Dashboard 

 

D2.2 [D2.2] provides a detailed description of these services. 

 

1.2.2 Experiment validation and correlation 

Deliverable D2.2 [D2.2] does not provide an illustration of the usage of the experiment validation and 
correlation service. Therefore, this section provides an example of such a usage that is displayed in 
Figure 2 on the following page.  
 
An experimenter (UserB in Figure 2) would like to replicate an experiment and compare her results to 
the previous experiment. To this end, she needs first to replicate the experiment, for example by 
retrieving the description of the experiment from the experiment management service provided UserA 
has allowed UserB to access it. 
Then, the analysis service can be used to correlate her results (Data 2 in Figure 2) from previous results 
(Data 1). 



 

 

8 

 
Figure 2: Replicating and correlating experiments 
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2 Analysis of the usage of SLICES Services 

Deliverable D2.5 [D2.5] describes three use cases that deal with highly complex scenarios for Digital 
Science researchers, targeting three different scenarios with societal impact: physical disaster 
scenarios served by drones (Unmanned Aerial Vehicles or UAVs), a fully-automated smart city 
environment, and a digital-twin assisted recycling model for buildings. 

This section briefly introduces each use case, infers an experiment that can needed, and discusses the 
services needed to be able to run it. 

 

2.3 Rapid Resource Deployment for Physical Disaster Scenarios 

2.3.1 Use Case Description 

In this use case, the fixed communication infrastructure could be destroyed or unavailable due to high 
workload demand. For rescue operations, additional on-demand computing and network resources 
have to be deployed, typically mobile agents, such as robots or UAVs. 

To serve the survivor devices as much as possible, there is a need to predict the kind and amount of 
resources these devices will request and the location of these resources. Some mobile edge resources 
may need to be deployed sporadically and temporarily at different locations based on IoT devices 
needs and mobility. Thus, there is a need to anticipate the deployment of edge services and to estimate 
the time they will be required at a given place to decide whether it is worth deploying durable edge 
resources, or instead mobile temporary resources could suffice. The trajectory of distributed mobile 
edge devices should be consciously planned accordingly, taking in consideration the time restrictions 
(robots should be deployed at the proper place before we need them).  

Moreover, since the number of available robots may still be inadequate to serve all ground services, 
the prioritization of the applications, flows and devices is of paramount importance for the success of 
critical missions. 

Even in the case of homogeneous mobile devices with identical computing and networking capabilities, 
their optimal allocation formulates a dynamic optimization problem, which depends on the size of the 
damaged area, the communication ranges, the propagation conditions, the data communication 
requirements (amount of data, frequency of collection, etc.) and the number and type of devices to 
serve for example. 

This scenario illustrates the use and combination of the different control components of the 
framework, and in particular: 1) workload estimation in quantity, time and space, 2) resource 
allocation (tasks assignments to UAV and/or robots) and 3) path trajectory. 

2.3.2 Experiments that can be run on SLICES 

From all the issues that this scenario requires to be solved, let focus on the study of the impact of the 
deployed agents and their localization on the quality of services that can be achieved. From the 
experimentation point of view, it requires to deploy mobile agents, fix resources, and networks. In 
order to cover a large part of the problem space (quality of service, energy consumption, mobility, 
etc.), it is important to have access to a variety of type of hardware (computing and network). A goal 
of the experiment is to provide data to derive predictive models that could be applied in practice. 
 
From a service point of view, the experiment workflow appears to be a classical one though the content 
of the experiment is complex: after selecting the needed resources thanks to the DISCOVERY service, 
the RESERVATION service is used to book the resources. The experiment is managed by the 
ORCHESTRATION service while the MONITORING service will be used to collect some data such as 
energy consumption for example. A critical part of the experiment is the deployment of the initial state 
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of the experiment that involved in particular the CONFIGURATION service to correctly set up the 
mobile agent and the deployment of services on edge or cloud nodes.  As this experiment may concern 
the addition or removal or degradation of resource to simulate various events that may occur during 
a disaster recovery scenario, the CONFIGURATION service should also be used during the execution of 
an experiment. Therefore, it is critical that the CONFIGURATION service does not add any overhead, 
or at least a very well described overhead, to minimize its impact on the experiment and/or to model 
its behavior.    
 
In conclusion, this example of complex experiment could be set up with current identified SLICES. The 
critical parts for such experiments are the availability of diverse and numerous types of hardware 
(computing, networking, mobile agent) that will limit the parameter space that could be covered. The 
larger and diverse the SLICES platform is, the more cases could be tested. We have also identified that 
services that can used within an experiment, such as CONFIGURATION in this case, must be very well 
described so that their behavior can be taken into account in the analysis of the experiment results. 
 

2.4 Smart-* applications: the smart cities’ example 

2.4.1 Use Case Description 

This use case deals with how a usual event in a city such as a car accident could be managed tomorrow. 
First, the detection may involve the analysis and correlation of multiple sources of data (sensors within 
cars, by users’ smartphones, and video streaming information such traffic light cameras, etc.).  Second, 
a rapid and efficient reaction to the event requires coordinating multiple actors (Police, Emergency 
services, Public transport, district/municipal services...). 
 

2.4.2 Experiments that can be run on SLICES 

With respect to the detection phase, this scenario may need experiments with SLICES to observe, 
analyse, and model interactions between the IoT devices and the cloud resources where the 
applications are executed. It will help address the sizing challenge of edge resources in terms of 
computation, storage and network needs.  In particular, such detection should involve distributed 
learning to reduce the amount of data to transfer as well as the coordination of various sources of 
data. For this sizing challenge, an experiment needs to access to varying size and type of resources 
(IoT, Cloud and network) to study where to deploy the various elements of the detection phase. 
Moreover, it can also study available algorithms used in the detection phase (typically distributed 
learning algorithms) to access their performance and behaviour under various conditions (number of 
events, size of the system, partial degradation, etc.). 
 
With respect of service, the workflow of such experiments also appears to be well covered by identified 
SLICES services with respect to resource and experiment management service. However, it can be used 
to highlight the question of deploying complex user level software such as federated learning 
components. With current SLICES services, one possibility is to embed such components into a virtual 
image (or container) and to deploy them with classical cloud-oriented technologies. Though there are 
many works concerning the description of deployable application, SLICES may also require to be able 
to compose such description to ease the reuse of part of an experiment. With respect to the current 
scenario, we can imagine the re-use of federated learning components that could have been 
developed and tested into another context. Therefore, further studies are needed to define various 
levels of description of services such that Experiment management and Experiment control and 
orchestration to enable experiment description reuse as well as to be able to maintain under control 
the complexity of experiment description. 
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2.5 Automated Construction and Demolition Waste Management using digital twin for buildings 

2.5.1 Use Case Description 

This use case focuses on the establishment of a digital twin that will integrate the different stages of 
Construction and Demolition Waste CDW management, by providing an integrated digital approach to 
enable waste traceability and management, where built asset project information is managed through 
the whole life cycle.  The digital twin will be established through the adoption and customization of a 
cloud-based collaboration solution, underpinned by existing standards, protocols, etc. 
 

2.5.2 Experiments that can be run on SLICES 

One experiment that may be needed by this use case is to build models to determine the type and 
localization of sensors and networks into the building. It is a typical case to where the solution requires 
to select a tradeoff between accuracy, energy consumption, resiliency, and cost for example. 
Therefore, an experiment may consist in characterizing the elements in various conditions, include 
external noise. A classical SLICES workflow experiment appears to be adapted to this experiment. A 
major criterion will be the availability of large and diverse type of hardware as well as the availability 
to collect accurate measure of their behavior, in terms of network parameter (latency, bandwidth, ...), 
computing (CPU and memory load, ...) as well as energy consumption. Therefore, the SLICES platform 
shall be able to collect and store all these data without affecting the experiment.  
Once the data have been collecting, post-mortem analyzes will be needed to build the models. 
Depending of the amount of required computation, these analyzes could be handle by the SLICES 
platform or may require to be exported to large supercomputer for extreme cases. 
 
 

3 Analysis of some existing services and technologies 

This section aims at providing some examples of implementation of the SLICES services that are 
currently used in operational testbeds. Although these implementations do not provide all the features 
required by SLICES, their listing would help identify what is the existing experience and technology that 
could be leveraged in the context of SLICES, and what are the relevant ideas and design choices that 
have been made in similar contexts. This is an initial study that will be continued in the next phases of 
SLICES. 
 
Table 1 hereafter provides a synthetic view of the analysis, which detailed in the remaining of this 
section. These services are in operation in the following research infrastructures: Grid '5000, FIT IoT 
Lab, IoT Lab (CH), PIONIER-LAB, PL-5G, FIT R2lab, FIT CorteXlab and NITOS.  
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UMS Grid'5000 X                           

stats5k Grid'5000     X                       

Grid'5000 ref. API Grid'5000       X                     

OAR Grid'5000         X                   

OAR FIT IoT-Lab         X                   

OAR FIT CorteXlab         X                   

Kadeploy Grid'5000           X                 

KaVLAN Grid'5000           X                 

Testbed manager FIT IoT-Lab    X X X X X               

EnOS 
Grid'5000, Virtual 
Wall, Chameleon 

          X                 

Kwollect Grid'5000             X               

Jupyter interface Grid'5000                        X   

CKAN IoT Lab   X           X             

GitLab IoT Lab   X           X             

RI-MMS 
PIONIER-LAB, 
PL-5G 

X   X   X X X         X X X 

R2lab API FIT R2lab X     X X             X     

R2lab website FIT R2lab X X X X X   X             X 

Rhubarbe FIT R2lab       X X X X               

nepi-ng FIT R2lab           X           X X X 

AccountMgt FIT CorteXlab X       X                   

Minus FIT CorteXlab           X             X   

CorteXlab-Dataset FIT CorteXlab               X             

NITOS Portal NITOS X X X X X X X         X X X 

OneLab Portal OneLab X X  X X         X 

Openstack API OneLab    X X X X     X   
 Table 1: Examples of existing services and technologies. 
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3.1 Grid’5000 User Management Service (USERS_MGT; Grid’5000) 

Grid’5000’s User Management Service provides user and groups (projects) management with 
appropriate delegation mechanisms (for example, once a project is approved, the project manager can 
authorize additional users to use the testbed). Automatic account creation based on external 
identification mechanisms (such as identity federations) is possible, and implemented for users of 
Fed4FIRE. Additionally, this service also supports automatic accounts creation for students in the 
context of teaching. 
 

3.2 stats5k (ACCOUNT; Grid’5000) 

stats5k is Grid’5000 data warehouse system to gather data about the testbed (availability, usage, 
impact such as publications, ...), linked with the user management service and the HAL Open Archive 
for publications. It generates various reports to provide insight about top users/groups, and it is also 
used to track indicators. 
 

3.3 Grid’5000 reference API (DISCOVERY; Grid’5000) 

All Grid’5000 resources are described in the Grid’5000 reference API, with a collection of detailed and 
versioned JSON documents. It also serves as a basis for the generation of a set of documentation pages 
(such as https://www.grid5000.fr/w/Hardware). This service is described in depth in [TRI14]. 
 

3.4 OAR (RESERVATION; Grid’5000) 

OAR is a resource management system, inspired from the HPC field. It supports selection of resources 
using SQL statements, batch scheduling (FIFO or priority based), time-based reservation in advance, 
etc. Its extensibility and flexibility are leveraged by Grid’5000 to build advanced reservation policies 
and resources selection capabilities. 
 

3.5 OAR (RESERVATION, FIT IoT Lab) 

FIT IoT-LAB reservation system is also based on OAR but only one central instance manages all remote 
IoT-LAB sites. Furthermore, the IoT-LAB OAR central instance is hidden behind the testbed-manager 
which provides a REST API for RESERVATION, CONFIGURATION and MONITORING. 
 

3.6 OAR (RESERVATION, FIT CorteXlab) 

FIT CorteXlab also make use of OAR to offer the service to book the CorteXlab room, to select radio 
nodes and to run experiments remotely. 
 

3.7 Kadeploy (CONFIGURATION; Grid’5000) 

Grid’5000 and FIT IoT Lab provide bare metal provisioning of system images using Kadeploy (described 
on https://www.grid5000.fr/w/Getting_Started for Grid’5000). Various system images are provided 
(with pre-installed software). Kadeploy is described in depth in [KA13]. 
 

3.8 KaVLAN (CONFIGURATION; Grid’5000) 

KaVLAN is Grid’5000 network reconfiguration solution, described on 
https://www.grid5000.fr/w/KaVLAN. KaVLAN works by dynamically reconfiguring network switches to 
move nodes to specific VLANs. Network topologies can be created directly using KaVLAN or using 
higher-level third-party tools. 
 

https://www.grid5000.fr/w/Hardware
https://www.grid5000.fr/w/Getting_Started
https://www.grid5000.fr/w/KaVLAN
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3.9 Testbed manager / FIT IoTLAB (ACCOUNT, DISCOVERY, RESERVATION, CONFIGURATION, 
MONITORING; FIT-IoT LAB)  

The FIT IoT-Lab testbed management is a private software suite running at the master server of the 
distributed server and in charge of discovering the new resources to be opened to experimentation 
and synchronize the different sites to expose them to reservations. It manages the resource 
reservation at the frontend and is in close communication with OAR module that ensures the resource 
reservation at the backend. The testbed management also allows master server configuration and 
monitoring.  Each remote site runs one site-manager REST server listening to orders from the central 
testbed-manager. At the end of the chain of command, each IoT resources are managed by the iot-
lab-gateway REST server (https://github.com/iot-lab/iot-lab-gateway)  waiting orders from the local 
site-manager. All user interactions are centralized by the testbed-manager REST API. 

 

3.10 Enos (CONFIGURATION; Grid5000, Virtual Wall, Chameleon) 

Enos aims at reproducible experiments of OpenStack. Enos relies on Kolla Ansible and helps users to 
easily deploy, customize and benchmark an OpenStack on several testbeds including Grid'5000, 
Chameleon and more generally any OpenStack cloud. Enos is described in depth in [ENOS]. 
 

3.11 Kwollect (MONITORING; Grid’5000) 

Kwollect is a service to collect infrastructure metrics (including high-frequency wattmeters) and expose 
them to experimenters. Kwollect scales to high frequencies of metrics collection for hundreds of 
nodes. It can also be leveraged by the experimenter to collect custom metrics. Kwollect is described in 
depth in [KW21]. 
 

3.12 Jupyter interface (ORCHESTRATION; Grid’5000) 

Grid’5000 provides a flexible Jupyter notebook interface, that provides access either outside the 
experiment context (if the notebook includes resources reservation), or inside it (to orchestrate data 
the experiment itself). It is described in [BN21]. 
 

3.13 CKAN (DATA, DOCUMENTATION; Mandat International, IoT Lab) 

Mandat International and the IoT Lab testbed offer several services to manage the data related to the 
experiments done in the research infrastructure. Firstly, a CKAN server permits to published in an open 
manner the different documents such as scientific papers, journal articles, deliverables and data sets. 
The CKAN server allows to implement FAIR principles during the publication phase of data and 
documentation related to the research infrastructure. 
 

3.14 GitLab (DATA, DOCUMENTATION; Mandat International, IoT Lab) 

A GitLab server is available to store source code and the related technical documentation. The 
documentation can be done on several formats such README.md files or Wikis. The GitLab server 
provides also the tools to realise Continuous Integration/Continuous Delivery (CI/CD) pipelines to ease 
the deployment on virtual machines used during the experimentations. 
 
 
 
 

https://github.com/iot-lab/iot-lab-gateway
https://github.com/BeyondTheClouds/enos
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3.15 RI-MMS (USERS_MGT, ACCOUNT, RESERVATION, CONFIGURATION, MONITORING, EXP_MGT, 
ORCHESTRATION, DASHBOARD; PL-5G and PIONIER-LAB) 

The purpose of RI-MMS (Research Infrastructure - Management and Monitoring System) is to provide 
an IT system for managing experiments in a distributed heterogeneous research infrastructure. The 
system is designed on the basis of the experience gathered from the implementation of an analogous 
solution for the management of research infrastructure offered under the PL-LAB and PL-LAB2020 
projects. 

The resources of individual laboratories are available to a wide range of users, ranging from scientists, 
through representatives of small and medium-sized industries, to individual users. Each logged-in user 
gets an access to the catalog of services offered by individual research laboratories. Using a dedicated 
form, the user can request specific resources for the time needed to carry out his/her research work. 

The use of laboratories and their resources requires a confirmation of the user’s identity. The RI-MMS 
integrates different identity providers, in particular eduGAIN and the Polish-wide Id management 
platform – PIONIER.Id. The added value of compatibility with eduGAIN is the compliance with the EOSC 
(European Open Science Cloud) platform, which ensures the possibility of transparent publication and 
sharing the results of scientific research. 

Users can select the location of the resources they intend to use and enter a detailed specification of 
resources (e.g., parameters of virtual machines to be deployed on demand) and indicate the topology 
of connections between the reserved resources. The system also provides a tool that allows the user 
to invite other participants who can obtain access rights to the shared resources in order to jointly 
conduct research work. 

The RI-MMS software is based on a distributed architecture. The central module of the system 
cooperates with the heterogeneous infrastructure of laboratories in order to implement the following 
processes: 

• configuration of devices in accordance with the reservation specification provided by the user 

• configuration of user access to reserved resources 

• collection of information about the availability of resources 

Moreover, the RI-MMS supports the manual process of resource allocation, in case the automatic 
resource configuration is not possible (e.g., due to the nature or limitations of the resource). 

Under the hood, RI-MMS uses the Netbox software as a way to store data about each device in each 
laboratory along with their access credentials. Additionally, resources modeled with Netbox can have 
relations or be a part of the hierarchy, which allows for creating complex network topologies.   

Currently, the software is being deployed for the management of research infrastructures built in PL-
5G and PIONIER-LAB projects. 
 

3.16 FIT-R2lab API (USERS_MGT, ACCOUNT, DISCOVERY, FIT-R2lab) 

Located at the core of R2lab's infrastructure, this component provides an xmlrpc API, so that programs 
can interact with the testbed in terms of, typically, account management and reservations; its full 
documentation can be found at https://r2labapi.inria.fr/db/doc/PLCAPI.php.  
 
 
 
 

https://r2labapi.inria.fr/db/doc/PLCAPI.php
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3.17 FIT-R2lab website and reservation service (RESERVATION, MONITORING; FIT-R2lab) 

As a specific development around the basic API capabilities, R2lab users interact on a daily basis with 
the platform through the dedicated website at https://fit-r2lab.inria.fr/. It provides for one-click 
reservations and real-time status display of the testbed components. 
 

3.18 Rhubarbe (DEPLOYMENT; FIT-R2lab) 

A dedicated software layer called ‘rhubarbe’ takes care of the low-level management of R2lab nodes 
and phones; among others, it supports the ability to save, and to massively deploy, low-level disk 
images, and in this respect is one of the core pillars of R2lab's reproducibility capabilities. It 
documentation is available at R2lab's website, at https://fit-r2lab.inria.fr/tutorial.md.  
 

3.19 nepi-ng (ORCHESTRATION; FIT-R2lab) 

This component focuses on experiments synchronization, and allows R2lab users to design and 
program their experiments in a reproducible way, while taking into account synchronization needs 
between all the physical equipments that need to cooperate in order to fulfill the experiment's 
constraints. nepi-ng is described at https://nepi-ng.inria.fr/ ; it is made of 2 layers of asynchronous-
Python (‘asyncio’) libraries, and is thus readily usable from any Python runtime, including Jupyter or 
colab notebooks. 
 

3.20 AccountManagement/CorteXlab (USERS_MGT, RESERVATION; FIT-CorteXlab) 

The accountManagement interface of CorteXlab offers user services to create and manage their 
accounts, and to access to their reservations through OAR. 
 

3.21 Minus/CorteXlab (CONFIGURATION, ORCHESTRATION; FIT-CorteXlab) 

Minus is a service allowing to deploy experimentations on the radio nodes of FIT-CorteXlab, to run 
these experimentations and to get the results. Its documentation is available at website 
https://wiki.cortexlab.fr/doku.php?id=get_started.  
 

3.22 CorteXlab-Dataset (DATA; FIT-CorteXlab) 

The repository (https://wiki.cortexlab.fr/doku.php?id=dl-datasets) provides access to the datasets 
generated on FIT-CorteXlab, for radio experimentations in a shielded area. 
 

3.23 NITOS portal (USERS_MGT, ACCOUNT, RESERVATION, CONFIGURATION, MONITORING, 
EXP_MGT, ORCHESTRATION, DASHBOARD; NITOS testbed) 

This component focuses on user management by employing a PostgreSQL component for storing user 
data with respect to accessing the underlying infrastructure. The component is able to allow a 
calendar-based reservation of wireless resources in the testbed (wireless nodes of different 
technologies, wireless spectrum allowed per experimenter) so as to allow isolation of users when 
multiple are running experiments concurrently. The NITOS Portal software is broken down to different 
components dedicated to different tasks; for example, configuration of a node to communicate with 
other testbeds over the GEANT network is accomplished by specifying the stitching points through the 
NITOS portal or configuration of programmable attenuation on the antenna outputs can be configured 
using some pre-defined routes in the city (mobility emulation framework). Experiment control is 
provided by invoking the respective OMF based framework commands (OMF – cOntrol and 
Management Framework [OMF]). Finally, the portal is providing documentation for accessing the 

https://fit-r2lab.inria.fr/
https://fit-r2lab.inria.fr/tutorial.md
https://nepi-ng.inria.fr/
https://wiki.cortexlab.fr/doku.php?id=get_started
https://wiki.cortexlab.fr/doku.php?id=dl-datasets
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resources or deploying experiments that are available in the NITOS experiment database. The 
framework is also providing monitoring of resources to the end-users, showing the health and current 
status of them, while it is also communicating through SFA with other testbeds. The portal has also 
been extended to support connections for orchestration with other frameworks, such as Open Source 
MANO and Kubernetes 
 

3.24 OneLab portal (USERS_MGT, DOCUMENTATION, DISCOVERY, RESERVATION, DASHBOARD; 
OneLab testbed) 

The portal https://portal.onelab.eu offers the possibility to reserve resources to run experiments 
combining multiple heterogeneous resources (IoT, Wireless and Cloud). It offers user management 
services to create and manage user accounts and also with the identity federation (GENI), it allows 
authentication from and to external source (CloudLab). It provides description of the reservable 
resources and documentation for accessing the resources and deploying experiments.  
 

3.25 Openstack API (DISCOVERY, RESERVATION, CONFIGURATION, MONITORING, EXP_MGT, 
OneLab testbed) 

This component provides a REST API based on the SFA (Slice-based Facility Architecture) and GENI AM 
API specification to advertise and allocate resources and also to monitor the resources and the status 
of the experiments. It allows Cloud-specific configuration to be pushed on the resources during the 
provisioning phase and provides automation using Ansible.  
 
 

4 Conclusion 

After providing an overview of the SLICES architecture and SLICES user-oriented services, this 
document focuses on a first analysis of the usage of such services with respect to three complex use 
cases. For each use case, a type of experiment has been presented as well as some impacts on SLICES 
services. It has enabled to confirm that the twelve identified services shall be able to cover complex 
use cases. It has also enabled to identify some points of attention that further refinement of services 
should take care of. The last part of the document provides a list of current implementations of such 
services. While clearly theses implementations do not provide the level of functionality required by 
SLICES, it enables to show that there exist partial implementations of these services. Moreover, it can 
also be used as an input, which has to be extended, for the tasks of the next phases of SLICES that will 
need to specify and implement these services. 

  

https://portal.onelab.eu/
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