

Institute for the Wireless Internet of Things at Northeastern University

The Road Ahead: An approach to Building an ecosystem for Beyond 5G to 6G Research

Abhimanyu Gosain SLICES Workshop March 3, 2021

Who We Are

- Lead the Institute for Wireless Internet of Things at NU
- Co-Manage NSF Platforms for Advanced Wireless Research (PAWR) Project Office
- Lead OpenAirX-Labs
 - OpenAirInterface Software Alliance Board Member
 - O-RAN Alliance Member
 - Open Networking Foundation (ONF) Member
 - Telecom Infra Project (TIP) Member Contributor
 - Magma Foundation Founding Member
- Inherited and Operate DARPA Colosseum
- Organizer of 6GSymposium

6G Symposium

Institute for the Wireless Internet of Things at Northeastern

(Some) Limitations of Current 4G and 5G Networks

- Monolithic architectures, hardware based
 - Hard to update, improve, reconfigure
 - Vendor lock-in
 - Geo-Politics

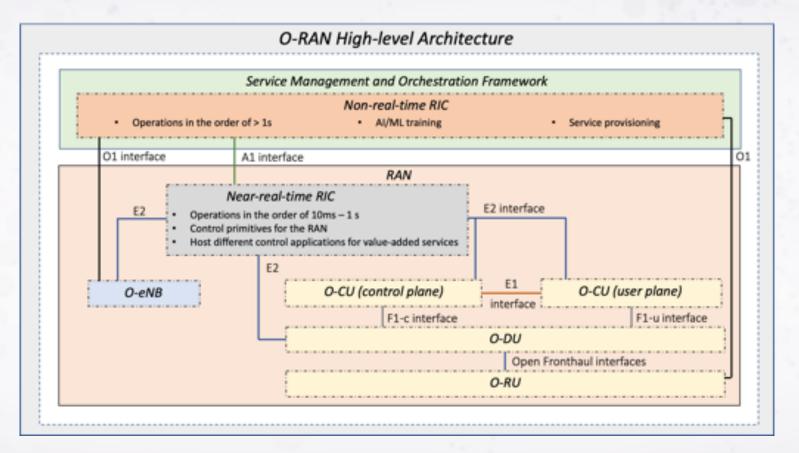
• Hard to programmatically control, especially at large scale

6G Wireless Systems will deliver ubiquitous, ultra reliable, near instantaneous Gbps connectivity between humans and machines

B5G/6G Enabling Technologies

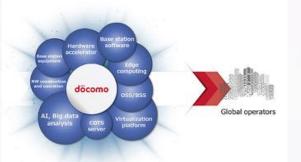
Institute for the Wireless Internet of Things at Northeastern University

Virtualized RAN Instantiated on Commodity Hardware

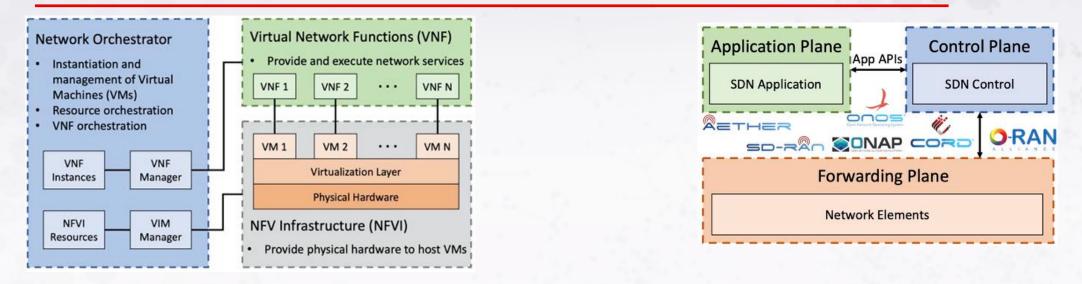

Traditional approach

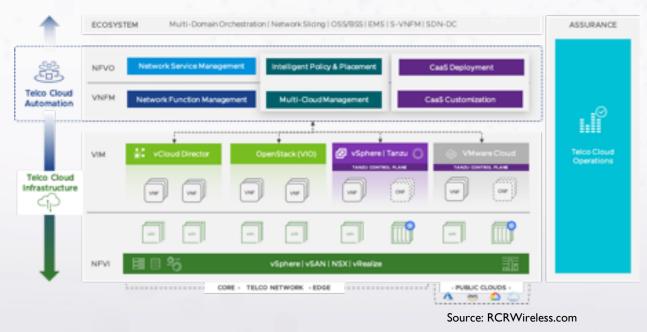
Virtualized RAN

O-RAN – "Horizontal Disaggregation" and Abstraction



OpenRAN Fragmentation





SDN + NFV + Cloud Native

Conquering the Spectrum

- The need to provide faster connectivity to an ever-growing number of wirelessly connected devices is motivating the exploration of higher frequency bands for communications
 - Under 95 GHz
 - 5G:
 - 3GPP 5G New Radio (NR) Frequency Range 2 (FR2) with up to 800 MHz of bandwidth
 - (US FCC) **Spectrum Frontiers** Auctions at 24 GHz, 28 GHz, 37 GHz, 39 GHz and 47 GHz
 - WiFi:
 - IEEE 802.11ad 2.16 GHz of bandwidth
 - IEEE 802.1 lay up to 4x2.16 GHz (8.64 GHz) of bandwidth
 - (US FCC) From 57 to 71 GHz = 14 GHz
 - Others:
 - Point-to-point links at 71-76 GHz & 81-86 GHz
 - Vehicular radar at 77 GHz
 - ..

 The need to provide faster connectivity to an ever-growing number of wirelessly connected devices is motivating the exploration of higher frequency bands for communications

Above 95 GHz

- In March 2019, FCC opened **Spectrum Horizons** for new services and technologies
 - Made a total of 21.2 GHz of spectrum available for use by unlicensed devices,
 - 116-123 GHz / 174.8-182 GHz / 185-190 GHz / 244-246 GHz
 - Defined a new category of experimental licenses for use of frequencies between 95 GHz and 3 THz
- Several major research initiatives are actively developing technologies above 95 GHz:
 - SRC ComSenTer Center: https://comsenter.engr.ucsb.edu
 - EU Ariadne: https://www.ict-ariadne.eu

The Elephant in the Room

• When moving to higher frequencies, propagation becomes much more challenging:

Antennas become smaller:

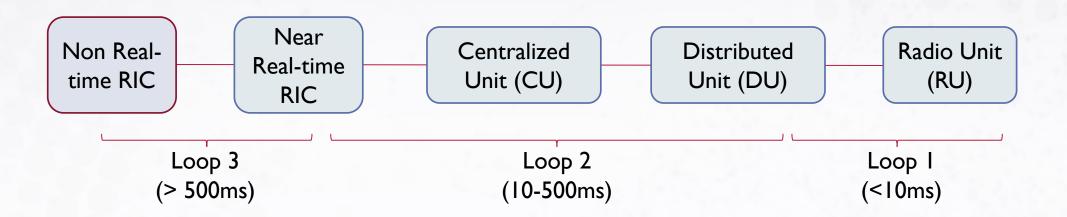
- Their effective area is inversely proportional to the square of the frequency 😕
- High gain directional antennas are needed to compensate for this
 - But these can also be very compact ☺
- Molecular absorption enters the game:
 - It appears only at discrete frequencies (or absorption lines)
 - The line width changes with distance and atmospheric conditions
 - A dynamic use of the spectrum makes more sense than ever $\ensuremath{\mathfrak{O}}$

• Blockage, reflections, diffraction are all real:

- Signals are easily blocked (partially absorbed, partially reflected) by elements whose size is more than a few wavelengths ☺
- Easily uncorrelated paths can be exploited for diversity/security ⁽²⁾

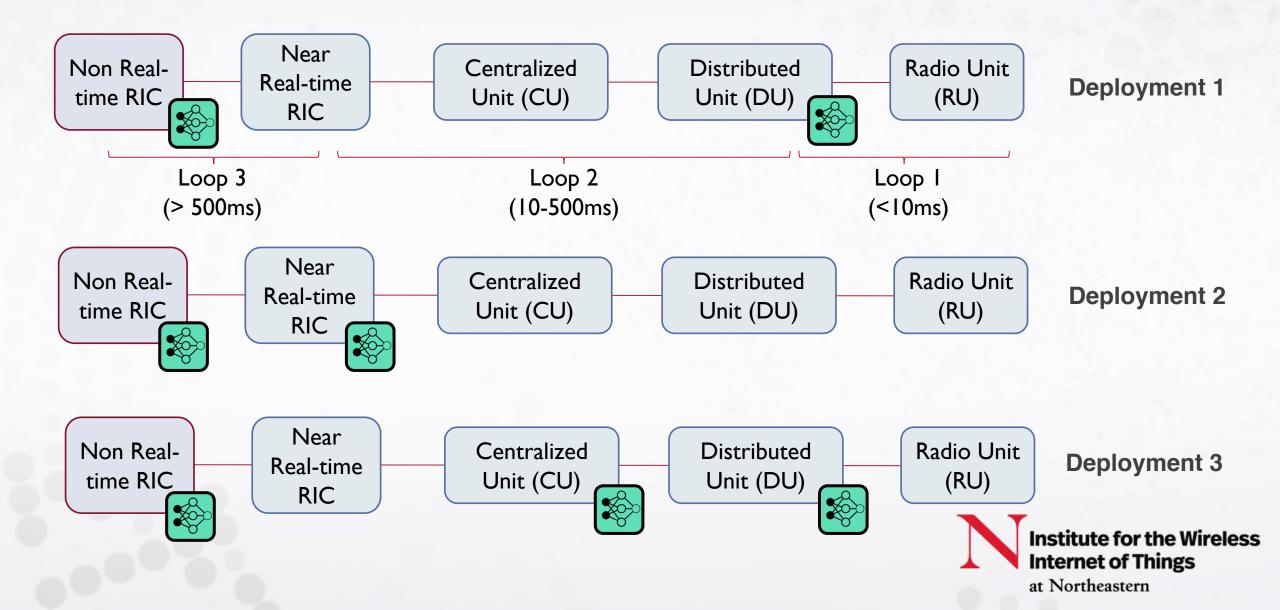
Combine all these with:

- Low power transmitters
- High phase noise oscillators


•

•

- AI/ML advances in Deep Neural Networks, Deep Reinforcement learning and Generative Adversarial networks are enabling disruption
 - OpenData: Availability of Large Open Datasets for Training • Synthesized and OTA Generated
 - Not a substitute for modeling and rigor
 - 1. Need to be used in combination with classical tools
 - 2. Need to look at system constraints
 - 3. Need to close the loop with "good data"


Network Intelligence with O-RAN

- **3 Al-enabled loops** with different:
 - Time-scales
 - Information available
 - Control strategies
 - e.g.: RUs implement low PHY functionalities only
- Use cases:
 - Slicing (RAN/core)
 - Beamforming
 - Traffic steering

Network Intelligence with O-RAN: deployments

COME JOIN US INFO@ADVANCEDWIRELESS.ORG

HTTP://POWDERWIRELESS.NET HTTP://COSMOS-LAB.ORG HTTP://AERPAW.ORG HTTP://COLOSSEUM.NET